

Axial Piston Fixed Motor A2FM

Series 6 Size Nominal pressure/Maximum pressure 5 315/350 bar 10 to 200 400/450 bar 250 to 1000 350/400 bar Open and closed circuits

Contents

Ordering code for standard program	2
Technical data	4
Dimensions	11
Flushing and boost pressure valve	34
Pressure-relief valve	36
Counterbalance valve BVD and BVE	38
Speed sensors	42
Installation instructions	44
General instructions	46

Features

- Fixed motor with axial tapered piston rotary group of bentaxis design, for hydrostatic drives in open and closed circuits
- For use in mobile and stationary applications
- The output speed is dependent on the flow of the pump and the displacement of the motor.
- The output torque increases with the pressure differential between the high-pressure and the low-pressure side.
- Finely graduated sizes permit far-reaching adaptation to the drive case
- High power density
- Small dimensions
- High total efficiency
- Good starting characteristics
- Economical design
- One-piece tapered piston with piston rings for sealing

1/46

Ordering code for standard program

	A2F		М			/	6	3			W		-	١	V									
01	1 02	03	04	05			0	6	07	7	08			C)9	10		11		12	13	1	4	15
	Hydraulic	fluid																						
	Mineral oi		FD. HFI	D for	sizes	\$ 250	to 10	000	only	/ in c	comb	inati	on w	vith lo	ona-	life b	earin	nas "l	L" (w	vitho	ut cod	e)		
01	HFB, HFC										o 20							0						
		,						-								nbina	tion	with	lona	-life	bearing	as "L'	')	E-
														,								0	<u> </u>	
	Axial pisto		<i>c</i> ,																					
02	Bent-axis	design,	fixed																					A2F
	Drive shaf	t beari	ng												5	to 20	00	250	to 5	500	710 t	o 100	0	
03	Standard	bearing	(withou	ut coc	de)											•			•			-		
03	Long-life b	bearing	·													-			•			•		L
	Operating	mada																						
04			tor A9F	F se	e RF	F 910	08)																	М
		-		<u></u> ,			00,																	
	Size (NG)																							
		- dienla	cement	200	table	of ve	alues	son	page	e 7								,						
	Geometric	uispia F																						
	Geometric		5 10					-			63	80	90	107	125	160	180	200	250	355	500 7 ⁻	10 10	00	
05	Geometric Series							-			63	80	90	107	125	160	180	200	250	355	500 7 ⁻	10 10	00	
05								-			63	80	90	107	125	160	180	200	250	355	500 7 ⁻	10 10	00	6
05 06	Series							-			63	80	90	107	125	160	180	200	250	355	500 7 ⁻	10 10	00	6
05 06								-			63	80	90	107		·			250	355	500 7 ⁻	10 10	00	-
05	Series							-			63	80	90	107		NG1	0 to		250	355	500 7 ⁻	10 10	00	1
05	Series							-			63	80	90	107		NG1 NG2	0 to 200	180				10 10		1
05	Series							-			63	80	90	107		NG1	0 to 200	180				10 10		1
05 06 07	Series		5 10					-			63	80	90	107		NG1 NG2	0 to 200	180				10 10		1
05	Series Index	of rotat	5 10	12	16	23		-			63	80	90	107		NG1 NG2	0 to 200	180				10 10		1
05 06 07 08	Series Index Direction	of rotat	5 10	12	16	23		-			63	80	90	107		NG1 NG2	0 to 200	180				10 10		1 3 0
05 06 07 08	Series Index Direction Viewed or Seals	of rotat	5 10 ion	12	16	23		-			63	80	90	107		NG1 NG2	0 to 200	180				10 10		1 3 0
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo	of rotat n drive s r-caoute	5 10 ion	direct	16	23	28	32	45	56						NG1 NG2 NG5	0 to 200 5 anc	180) to ⁻	1000)			1 3 0 W
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf	of rotat n drive s r-caouto	5 10 ion	12	16	23	28 	23	45	32		56		80		NG1 NG2 NG5	0 to 200 5 anc	180) to ⁻	1000				1 3 0 W V
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf Splined sł	of rotat n drive s r-caouto its naft	5 10 ion	12 direct	16 iona 10	23 	28 : 	32 	45 28	56 32 •	45 -	56 ●	63	80		NG1 NG2 NG5	0 to 200 5 anc	180 1 250 160) to ⁻	1000 200)			1 3 0 W V
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf Splined st DIN 5480	of rotat n drive s r-caouto its	5 10 ion haft, bio chouc)	direct	16	23	28 : 	23	45	32		56		80		NG1 NG2 NG5	0 to 200 5 anc	180) to ⁻	1000)			1 3 0 W V V
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf DIN 5480 Parallel ke	of rotat n drive s r-caouto its naft	5 10 ion haft, bio chouc)	12 direct	16 iona 10	23 	28 : 	32 	45 28	56 32 •	45 -	56 ●	63	80		NG1 NG2 NG5	0 to 200 5 anc	180 1 250 160) to ⁻	1000 200)			1 3 0 W V
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf Splined st DIN 5480	of rotat n drive s r-caouto its naft	5 10 ion haft, bio chouc)	12 direct 5 - -	16 iona 10	23 	28	32 23 ●	45 28	56 32 -	45 - •	56 •	63	80 •		NG1 NG2 NG5	0 to 200 5 anc 125 • -	180 1 250 160 •) to ⁻	10000 2000 • -	250 t	<u>o 100</u> -		1 3 0 W V V A Z
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf DIN 5480 Parallel ke	of rotat a drive s r-caouto ts paft	5 10 ion haft, bio chouc)	12 direct 5 - -	16 iona 10	23 1 12 • •	28	23 • •	45 28	56 32 -	45 - •	56 • •	63	80 •		NG1 NG2 NG5	0 to 200 5 anc 125 • -	180 1 250 160 •) to ⁻	1000 2000 • -	250 t	o 100 - -		1 3 0 W V V A Z B
05 06 07 08 09	Series Index Direction of Viewed or Seals FKM (fluo Drive shaf DIN 5480 Parallel ke DIN 6885 Conical sh	of rotat n drive s r-caouto its naft yed sha	5 10 ion shaft, bio shouc)	12 direct 5 - - -	16 iona 10	23 1 12 • •	28	23 • •	45 28	56 32 -	45 - •	56 • •	63	80 •		NG1 NG2 NG5	0 to 200 5 anc 125 • -	180 1 250 160 • • • •) to - 180 - - - - -	10000 2000 - - - - - -) 250 t	<u>o</u> 100 − − ● −		1 3 0 W V V A Z B P
05 06 07 08 09	Series Index Direction Viewed or Seals FKM (fluo Drive shaf Splined st DIN 5480 Parallel ke DIN 6885 Conical st Mounting	of rotat a drive s r-caouto its paft paft ¹⁾ flanges	5 10 ion shaft, bio chouc)	12 direct 5 - - -	16 iona 10	23 1 12 • •	28	23 • •	45 28	56 32 -	45 - •	56 • •	63	80 •		NG1 NG2 NG5	0 to 200 5 anc 125 • -	180 1 250 160 • • • •	180 - - - - - - - - - - - - -	10000 2000 - - - - - -	250 t	<u>o</u> 100 − − ● −		1 3 0 W V V A Z B P C
05 06 07 08 09	Series Index Direction of Viewed or Seals FKM (fluo Drive shaf DIN 5480 Parallel ke DIN 6885 Conical sh	of rotat of rotat of drive s r-caouto tts paft paft ¹⁾ flanges -2	5 10 ion shaft, bio shouc)	12 direct 5 - - -	16 iona 10	23 1 12 • •	28	23 • •	45 28	56 32 -	45 - •	56 • •	63	80 •		NG1 NG2 NG5	0 to 200 5 anc 125 • -	180 1 250 160 • • • •) to - 180 - - - - -	10000 2000 - - - - - -	250 t	<u>o</u> 100 − − ● −		1 3 0 W V V A Z B P

 \bullet = Available

O = On request

– = Not available

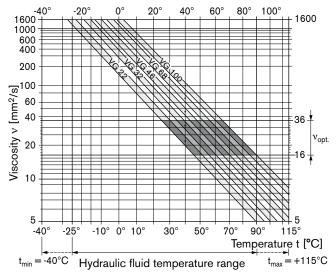
= Preferred program

1) Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be transmitted via the tapered press fit.

Ordering code for standard program

Port plate SAE flang A and B a SAE flang A and B a		04				6	_		W		-	V							
SAE flang A and B a SAE flang			05			06		07	08			09	10	11	1	12	13	14	15
SAE flang A and B a SAE flang		ervice li	nes ²⁾			5	10-16	23	28.32	45	56.63	80.90	107-125	160-180	200	250	355-500	0 1000	
A and B a SAE flang				01	0	_	_		•	•	•	•	•	•	•	•	•	•	010
•	•			-	7	-	-	-	_	-	_	-	_	_	-	-	•	-	017
A and B a	e ports			02	0	-	-		•		•		•	•	-	•	-	-	020
	t side,	opposite	1		7	-	-	-	-	•			•	•	-		-	-	027
					9	-	-	-	-	-	•		-	-	-	-	-	-	029
	•	and B		03	0	•	•	•	•	-	-	-	-	-	-	-	-	-	030
				04	0	-	•	•	•	•	•	-	-	-	-	0	-	-	040
			side)	10	0	-	_	-	•	•	•	•	•	•	-	-	0	-	100
Port plate			BVD	17	1	-	-	-	-	-	-	-	•	-					171 178
relief valve	es for m	ounting	a BVE	18 18	8	-	-	-	•	•	•	•	•	•	-	_ _4)	-	-	181 188
Port plate	with				1	-	_	-	•	•	•	•	•	•	-	-	-	-	191
•		lves				-	_	-	•	•	•	•	•	•	-	-	-	-	192
Pressure- Flushing a	relief va Ind boo	lve (with st press	pressure ure valve	mou	inte	d	ity)					2 7							
Pressure- Flushing a Counterb Flushing a	relief va Ind boc alance Ind boc	lve (with est press valve BV est press	pressure ure valve D/BVE m ure valve	, mou nount , inte	inte ed ⁵ grat	ed 5)6)	ity)		51			7 8 9	n 90	20	250 	to 50	10 710 te	• 1000 ⁴)
Pressure- Flushing a Counterb Flushing a	relief va Ind boo alance Ind boo nsors (lve (with st press valve BV st press see page	pressure ure valve D/BVE m ure valve es 42 and	mount inte d 43)	inte ed ⁵ grat	ed 5)6)	ity)		5 1	to 16	5 23	7 8		00	<u>250 t</u>	to 50	00 710 tc	<u>o 1000⁴</u> ●)
Pressure- Flushing a Counterb Flushing a Speed se Without s	relief va and boc alance und boc nsors (peed se	lve (with st press valve BV st press see page ensor (w	pressure ure valve D/BVE m ure valve es 42 and ithout co	mount inte d 43)	inte ed ⁵ grat	ed 5)6)	ity)		51	-	6 23	7 8 9			250 t	to 50 ●	00 710 tc) 1000 ⁴ ● -) F
Pressure- Flushing a Counterb Flushing a	relief va alance and boc nd boc nsors (peed so for HD	lve (with st press valve BV st press see page ensor (w D speed	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor	mount inte d 43)	inte ed ⁵ grat	ed 5)6)	ity)		51	-	6 23	7 8 9 3 to 180			250 t	to 50 ●	00 710 tc	• 1000 ⁴ ● - -	
Pressure- Flushing a Counterb Flushing a Speed se Without s Prepared	relief va and boc and boc nsors (peed so for HD ed sens	lve (with st press valve BV st press see page ensor (w D speed sor mour	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor ited ⁷⁾	mount inte d 43)	inte ed ⁵ grat	ed 5)6)	ity)		51	-	6 23	7 8 9 3 to 180				to 50 • •	00 710 to	• 1000 ⁴ ● - - -	F
Pressure- Flushing a Counterb Flushing a Speed se Without s Prepared HDD spe	relief va and boo alance and boo nsors (peed se for HD ed sens for DS/	lve (with st press valve BV st press see pag ensor (w D speed sor mour A speed	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor ited ⁷⁾ sensor	mount inte d 43)	inte ed ⁵ grat	ed 5)6)	ity)		51	-	6 23	7 8 9 3 to 180 •			(•	00 710 tc	● 1000 ⁴ ● - - - -	F
Pressure- Flushing a Counterb Flushing a Speed se Without s Prepared HDD spe Prepared	relief va and boo and boo nsors (peed so for HD ed sens for DS) ed sens	lve (with st press valve BV st press see pag ensor (w D speed sor mour A speed	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor ited ⁷⁾ sensor	mount inte d 43)	inte ed ⁵ grat	ed 5)6)	ity)		51	-	5 23	7 8 9 3 to 180 • • •			(• • • •	00 710 to	 > 1000⁴ ● - - - - - - - 	F H U
Pressure- Flushing a Counterb Flushing a Speed se Without s Prepared HDD spe Prepared DSA spee	relief va and boo alance and boo nsors (peed so for HD ed sens for DS/ ed sens	lve (with st press valve BV st press see page ensor (w D speed sor mour A speed or moun	pressure ure valve D/BVE m ure valve es 42 and ithout cod sensor ited ⁷⁾ sensor ted ⁷⁾	mount inte d 43)	inte ed ⁵ grat	ed 5)6)			51	-	5 23	7 8 9 3 to 180 • • •			(• • • •	00 710 tc	 > 1000⁴ ● - -<td>F H U</td>	F H U
Pressure- Flushing a Counterb Flushing a Speed se Without s Prepared HDD spe Prepared DSA spee Special ve	relief va and boo alance and boo msors (peed se for HD ed sens for DS/ ed sens ersion version	lve (with st press valve BV st press see pag ensor (w D speed sor mour A speed or moun (withou	pressure ure valve D/BVE m ure valve es 42 and ithout coust sensor ited ⁷⁾ sensor ted ⁷⁾	, mount nount inte d 43) de)	grat	ed ii)6) ted		plate		-	5 23	7 8 9 3 to 180 • • •			(• • • •	00 710 to	 → 1000⁴ → →<td>F H U</td>	F H U
Pressure- Flushing a Counterb. Flushing a Speed se Without s Prepared HDD spe Prepared DSA spee Standard Special ve Standard	relief va and boo alance and boo nsors (peed so for HD ed sens for DS/ ed sens ersion ersion for version for	lve (with st press valve BV st press see pag ensor (w D speed or mour A speed or mour (withour or slew c	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor ited ⁷⁾ sensor ted ⁷⁾ t code) frives (sta	, mount nount inte d 43) de)	grat	ed ii)6) ted		plate		-	5 23	7 8 9 3 to 180 • • •			(• • • •	00 710 to	 1000⁴ <li< td=""><td>F H U V</td></li<>	F H U V
Pressure- Flushing a Counterb Flushing a Speed se Without s Prepared HDD spe Prepared DSA spee Standard Special ve Standard	relief va and boo alance and boo nsors (peed so for HD ed sens for DS/ ed sens ersion version for spec version	Ive (with st press valve BV st press see page ensor (w D speed or mour A speed or moun (withour or slew c (withour (withour	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor ited ⁷⁾ sensor ted ⁷⁾ t code) drives (sta	nount nount i inte d 43) de)	grat	ed (i)6) ted vith	port	•	2 19)	•		7 8 9 3 to 18(• • • •			(• • • •	00 710 to	 → 1000⁴ – –<td>F H U V</td>	F H U V
Pressure- Flushing a Counterb. Flushing a Speed se Without s Prepared HDD spe Prepared DSA spee Standard Special ve Standard	relief va and boo alance and boo nsors (peed so for HD ed sens for DS/ ed sens ersion ersion for version version version	Ive (with st press valve BV st press see page ensor (w D speed or mour A speed or moun (withour or slew c (withour (withour	pressure ure valve D/BVE m ure valve es 42 and ithout coo sensor ited ⁷⁾ sensor ted ⁷⁾ t code) drives (sta	nount nount i inte d 43) de)	grat	ed (i)6) ted vith	port	•	2 19)	•		7 8 9 3 to 18(• • • •			(• • • •	10 710 tc	 > 1000⁴ - -<td>F H U V</td>	F H U V
	at side, op Threaded at side an SAE flang A and B a Port plate with 1-leve relief valve counterba Port plate pressure-r Valves (se	at side, opposite Threaded ports A at side and rear ³⁾ SAE flange ports A and B at bottor Port plate with 1-level press relief valves for m counterbalance v Port plate with pressure-relief va Valves (see page Without valve	Threaded ports A and B at side and rear ³⁾ SAE flange ports A and B at bottom (same Port plate with 1-level pressure- relief valves for mounting counterbalance valve ⁵⁾ Port plate with pressure-relief valves Valves (see pages 34 to Without valve	at side, opposite Threaded ports A and B at side and rear ³⁾ SAE flange ports A and B at bottom (same side) Port plate sure- relief valves for mounting a counterbalance valve ⁵⁾ BVE Port plate with pressure-relief valves Valves (see pages 34 to 41) Without valve	at side, opposite Threaded ports A and B at side and rear ^{3) SAE flange ports A and B at bottom (same side) Port plate with 1-level pressure- relief valves for mounting a counterbalance valve⁵⁾ BVE 18 Port plate with 19 pressure-relief valves Valves (see pages 34 to 41) Without valve}	at side, opposite0Threaded ports A and B at side and rear ³⁾ 04 at side and rear ³⁾ 0SAE flange ports A and B at bottom (same side)10 a0Port plate with 1-level pressure- relief valves for mounting a counterbalance valve ⁵⁾ 17 BVE1 BPort plate with pressure-relief valves18 BVE18 CPort plate with pressure-relief valves19 Z1 CValves (see pages 34 to 41)4	at side, opposite0•Threaded ports A and B at side and rear ³⁾ 0-SAE flange ports A and B at bottom (same side)100-Port plate with 1-level pressure- relief valves for mounting a counterbalance valve ⁵⁾ 1711BVE BVE188-Port plate with pressure-relief valves191-Port plate with pressure-relief valves191-Valves (see pages 34 to 41)	at side, opposite0••Threaded ports A and B at side and rear ³⁾ 04 at side and rear ³⁾ 0-•SAE flange ports A and B at bottom (same side)10 p0Port plate with 1-level pressure- relief valves for mounting a counterbalance valve ⁵⁾ 17 BVE18 B17 a1 a-Port plate with pressure-relief valves19 BVE1Port plate with pressure-relief valves19 Z1Valves (see pages 34 to 41)Without valve	at side, opposite0•••Threaded ports A and B at side and rear ³⁾ 04 A and B at bottom (same side)0-••SAE flange ports A and B at bottom (same side)10 Port plate0Port plate relief valves for mounting a counterbalance valve ⁵⁾ BVE BVE18 BVEPort plate with pressure-relief valves19 21Port plate with pressure-relief valves19 21Valves (see pages 34 to 41)Vithout valve	at side, opposite0••••Threaded ports A and B at side and rear3)04 A and B at bottom (same side)0••SAE flange ports A and B at bottom (same side)10 Port plate0•Port plate with 1-level pressure- relief valves for mounting a counterbalance valve5)17 BVE1 BVE18 BPort plate with pressure-relief valves19 BVE1Port plate with pressure-relief valves19 21•Valves (see pages 34 to 41)++•	at side, opposite 0 Threaded ports A and B 04 0 at side and rear ³⁾ 0 SAE flange ports 10 0 A and B at bottom (same side) 0 Port plate BVD 17 1 with 1-level pressure- 18 8 relief valves for mounting a 18 BVE 18 Port plate with 19 1 Port plate with 19 1 Port plate with 19 1 Valves (see pages 34 to 41)	at side, opposite 0 • • • Threaded ports A and B at side and rear ³⁾ 04 and B at bottom (same side) 0 •	at side, opposite 0 • • • • Threaded ports A and B at side and rear ³⁾ 0 0 - • • • • SAE flange ports A and B at bottom (same side) 10 0 • • • • - Port plate with 1-level pressure-relief valves for mounting a counterbalance valve ⁵⁾ 18 17 1 Port plate with pressure-relief valves 19 1 Valves (see pages 34 to 41) • • • • •	at side, opposite0 \bullet \bullet \bullet $ -$ Threaded ports A and B at side and rear ³⁾ 00 $ \bullet$ \bullet \bullet \bullet $ -$ SAE flange ports A and B at bottom (same side)10 00 $ \bullet$ \bullet \bullet \bullet \bullet Port plate relief valves for mounting a counterbalance valve ⁵⁾ 17 BVE1 8 $ \bullet$ \bullet \bullet Port plate with pressure-relief valves19 21 $ \bullet$ \bullet \bullet Valves (see pages 34 to 41) \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet Without valve \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet	at side, opposite 0 0	at side, opposite 0 • • • •	at side, opposite 0 0	at side, opposite 0 • • • -	at side, opposite 0

- 5) Note the restrictions on page 39.
- 6) Specify ordering code of counterbalance valve according to data sheet (BVD RE 95522, BVE RE 95525) separately.
- 7) Specify ordering code of sensor according to data sheet (DSA RE 95133, HDD RE 95135) separately and observe the requirements on the electronics


POOCCA A HYDRAULIC MANUFACTURING

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed motor A2FM is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Viscosity and temperature of hydraulic fluid

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit, the circuit temperature, in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range ($v_{opt.}$, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the circuit temperature or reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (sizes 250 to 1000) or using a flushing and boost pressure valve (see pages 34).

	Viscosity [mm ² /s]	Temperature	Comment
Transport and storage at ambient temperature		$\begin{array}{l} T_{min} \geq -50 \ ^{o}C \\ T_{opt} = +5 \ ^{o}C \ to \ +20 \ ^{o}C \end{array}$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	$v_{max} = 1600$	$T_{St} \ge -40 \ ^{\circ}C$	$ \begin{array}{l} t\leq 3 \text{ min, without load } (p\leq 50 \text{ bar}), \\ n\leq 1000 \text{ rpm (for sizes 5 to 200),} \\ n\leq 0.25 \bullet n_{nom} \text{ (for sizes 250 to 1000)} \end{array} $
Permissible temperature	difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	$\nu <$ 1600 to 400	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom},n \leq 0.5$ • $n_{nom}andt \leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$\nu_{min} \geq 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 \bullet p_{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

1) At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

2) Sizes 250 to 1000, please contact us.

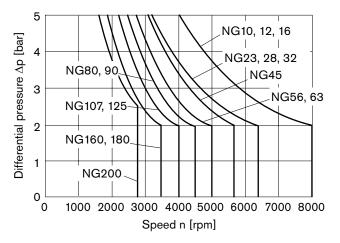
Filtration of the hydraulic fluid

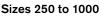
Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

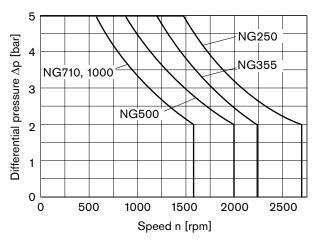
To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.


Shaft seal


Permissible pressure loading


The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

Sizes 10 to 200

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 °C to +115 °C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed	on drive shaft
clockwise	counter-clockwise
A to B	B to A

Speed range

No limit to minimum speed n_{min} . If uniformity of motion is required, speed n_{min} must not be less than 50 rpm. See table of values on page 7 for maximum speed.

Long-life bearing

Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

Flushing flow (recommended)

NG	250	355	500	710	1000
q _{v flush} (L/min)	10	16	16	16	16

Operating pressure range

(operating with mineral oil)

Pressure at service line port A or B

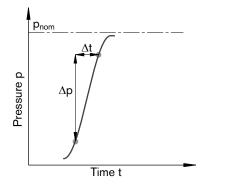
Size 5

Nominal pressure pnom	_315 bar absolute
Maximum pressure pmax Single operating period Total operating period	_ 350 bar absolute 10 s 300 h
Summation pressure (pressure A + pressu	re B) p _{Su} 630 bar
Sizes 10 to 200	
Nominal pressure pnom	400 bar absolute

Maximum pressure p _{max}	450 bar absolute
Single operating period	10 s
Total operating period	300 h

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar

Sizes 250 to 1000

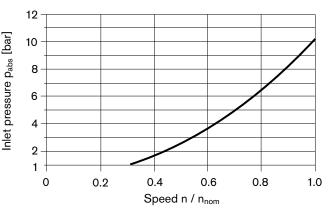

Nominal pressure p _{nom}	350 bar absolute
Maximum pressure p _{max} Single operating period	400 bar absolute 10 s
Total operating period	300 h

Summation pressure (pressure A + pressure B) p_{Su} _ 700 bar

Minimum pressure (high-pressure side) ____25 bar absolute

Rate of pressure change $R_{A max}$

with integrated pressure-relief valve_	9000 bar/s
without pressure-relief valve	16000 bar/s



Note

Values for other hydraulic fluids, please contact us.

Minimum pressure - pump mode (inlet)

To prevent damage to the axial piston motor in pump operating mode (change of high-pressure side with unchanged direction of rotation, e. g. when braking), a minimum pressure must be guaranteed at the service line port (inlet). The minimum pressure depends on the speed of the axial piston unit (see characteristic curve below).

This diagram is valid only for the optimum viscosity range from v_{opt} = 36 to 16 $\text{mm}^2/\text{s}.$

Please contact us if these conditions cannot be satisfied.

Definition

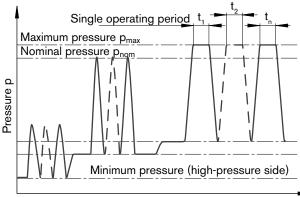
Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)


Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Summation pressure pSu

The summation pressure is the sum of the pressures at both service line ports (A and B).

Rate of pressure change RA

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Table of values (theoretical values, without efficiency and	d tolerances; values rounded)
---	-------------------------------

Size		NG		5	10	12	16	23	28	32	45	56	63	80
Displacemer per revolutio	-	Vg	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Speed maxir	num ¹⁾	n _{nom}	rpm	10000	8000	8000	8000	6300	6300	6300	5600	5000	5000	4500
		n _{max} 2)	rpm	11000	8800	8800	8800	6900	6900	6900	6200	5500	5500	5000
Input flow ³⁾														
at n _{nom} ar	d V _g	q _V	L/min	49	82	96	128	144	177	202	255	281	315	362
Torque ⁴⁾														
at V_g and	$\Delta p = 350 \text{ bar}$	Т	Nm	24.7 ⁵⁾	57	67	89	128	157	178	254	313	351	448
	$\Delta p = 400 \text{ bar}$	Т	Nm	-	66	76	102	146	179	204	290	357	401	512
Rotary stiffne	ess	С	kNm/rad	0.63	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94	6.25	8.73
Moment of ir rotary group	nertia for	J _{GR}	kgm²	0.00006	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Maximum an acceleration	gular	α	rad/s ²	5000	5000	5000	5000	6500	6500	6500	14600	7500	7500	6000
Case volume	9	۷	L		0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Mass (appro	x.)	m	kg	2.5	5.4	5.4	5.4	9.5	9.5	9.5	13.5	18	18	23
Size		NG		90	107	125	160	180	200	250	355	500	710	1000
Displacemer per revolutio	nt geometric, n	V_{g}	cm ³	90	106.7	125	160.4	180	200	250	355	500	710	1000
Speed maxir	num ¹⁾	n _{nom}	rpm	4500	4000	4000	3600	3600	2750	2700	2240	2000	1600	1600
		n _{max} ²⁾	rpm	5000	4400	4400	4000	4000	3000	-	-	-	_	-
Input flow ³⁾		n _{max} ²⁾	rpm	5000	4400	4400	4000	4000	3000	-	_	-	-	_
Input flow ³⁾ at n _{nom} ar	nd V _g	n _{max} ²⁾ q _V	rpm L/min	5000 405	4400 427	4400 500	4000 577	4000 648	3000 550	- 675	- 795	- 1000	- 1136	- 1600
•	id V _g										- 795	- 1000	- 1136	- 1600
at n _{nom} ar	$d V_g$ $\Delta p = 350 bar$	q _V									- 795 1978	- 1000 2785	- 1136 3955	- 1600 5570
at n _{nom} ar Torque ⁴⁾		qv T	L/min	405	427	500	577	648	550	675				
at n _{nom} ar Torque ⁴⁾	$\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	qv T	L/min	405 501	427 594	500 696	577 893	648 1003	550 1114	675 1393	1978	2785	3955	
at n _{nom} ar Torque ⁴⁾ at V _g and	$\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	qv T T	L/min Nm Nm	405 501 573 9.14	427 594 679	500 696 796 11.9	577 893 1021 17.4	648 1003 1146	550 1114 1273 57.3	675 1393 - 73.1	1978 -	2785 -	3955 -	5570 -
at n _{nom} ar Torque ⁴⁾ at V _g and Rotary stiffno Moment of in	$\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess nertia for	q _V T T c	L/min Nm Nm kNm/rad	405 501 573 9.14	427 594 679 11.2	500 696 796 11.9	577 893 1021 17.4	648 1003 1146 18.2	550 1114 1273 57.3	675 1393 - 73.1	1978 - 96.1 0.102	2785 - 144	3955 - 270	5570 - 324
at n _{nom} ar Torque ⁴⁾ at V _g and Rotary stiffne Moment of ir rotary group Maximum an	$\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 400 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{1}{2}$	q _V T T C J _{GR}	L/min Nm Nm kNm/rad kgm ²	405 501 573 9.14 0.0072	427 594 679 11.2 0.0116	500 696 796 11.9 0.0116	577 893 1021 17.4 0.0220	648 1003 1146 18.2 0.0220	550 1114 1273 57.3 0.0353	675 1393 - 73.1 0.061	1978 - 96.1 0.102	2785 - 144 0.178	3955 - 270 0.55	5570 - 324 0.55
at n _{nom} ar Torque ⁴⁾ at V _g and Rotary stiffno Moment of ir rotary group Maximum an acceleration	$\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ ess hertia for gular	q _V T T C J _{GR} α	L/min Nm Nm kNm/rad kgm ² rad/s ²	405 501 573 9.14 0.0072 6000	427 594 679 11.2 0.0116 4500	500 696 796 11.9 0.0116 4500	577 893 1021 17.4 0.0220 3500	648 1003 1146 18.2 0.0220 3500	550 1114 1273 57.3 0.0353 11000	675 1393 - 73.1 0.061 10000	1978 - 96.1 0.102 8300	2785 - 144 0.178 5500	3955 - 270 0.55 4300	5570 - 324 0.55 4500

1) The values are valid:

- for the optimum viscosity range from

 $v_{opt} = 36$ to 16 mm²/s

- with hydraulic fluid based on mineral oils

- 2) Intermittent maximum speed: overspeed for unload and overhauling processes, t < 5 s and Δp < 150 bar
- Restriction of input flow with counterbalance valve, see page 39
- 4) Torque without radial force, with radial force see page 8

5) Torque at $\Delta p = 315$ bar

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

Size		NG		5	5 ³⁾	10	10	12	12	16	23	23
Drive shaft		Ø	mm	12	12	20	25	20	25	25	25	30
Maximum	"Fa	F _{q max}	kN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4
radial force ¹⁾ at distance a (from shaft collar)		a	mm	12	12	16	16	16	16	16	16	16
with permissible torque		T _{max}	Nm	24.7	24.7	66	66	76	76	102	146	146
\triangleq permissible pressure Δp		Δp _{perm}	bar	315	315	400	400	400	400	400	400	400
Maximum axial force ²⁾	- . fb	+F _{ax max}	N	180	180	320	320	320	320	320	500	500
	F _{ax} ±≕∈	-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	±F _{ax perm/bar}	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2
Size		NG		28	28	32	45	56	56 ⁴⁾	56	63	80
Drive shaft		Ø	mm	25	30	30	30	30	30	35	35	35
Maximum radial force ¹⁾	_F _q	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6
at distance a (from shaft collar)		а	mm	16	16	16	18	18	18	18	18	20
with permissible torq	ue	T _{max}	Nm	179	179	204	290	357	294	357	401	512
≙ permissible pressu	ıre ∆p	Δp_{perm}	bar	400	400	400	400	400	330	400	400	400
Maximum axial force ²⁾	∊ +→⊣ſſì	+F _{ax max}	Ν	500	500	500	630	800	800	800	800	1000
	Fax±≓€	-F _{ax max}	Ν	0	0	0	0	0	0	0	0	0
Permissible axial force per	bar operating pressure	$\pm F_{ax perm/bar}$	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6
Size		NG		80 ⁴⁾	80	90	107	107	125	160	160	180
Drive shaft		Ø	mm	35	40	40	40	45	45	45	50	50
Maximum	,F _q	Ø F _{q max}	mm kN	35 11.1	40 11.4	40 11.4	40	45 14.1	45 14.1	45 18.1	50 18.3	50 18.3
Maximum radial force ¹⁾ at distance a		F _{q max}	kN	11.1	11.4	11.4	13.6	14.1	14.1	18.1	18.3	18.3
Maximum radial force ¹⁾ at distance a (from shaft collar)	ue	F _{q max} a T _{max} Δp _{perm}	kN mm	11.1 20	11.4 20	11.4 20	13.6 20	14.1 20	14.1 20	18.1 25	18.3 25	18.3 25
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq	ue Ire Δp	F _{q max} a T _{max} Δp _{perm} +F _{ax max}	kN mm Nm	11.1 20 488	11.4 20 512	11.4 20 573	13.6 20 679	14.1 20 679	14.1 20 796	18.1 25 1021	18.3 25 1021	18.3 25 1146
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu	ue	F _{q max} a T _{max} Δp _{perm}	kN mm Nm bar	11.1 20 488 380	11.4 20 512 400	11.4 20 573 400	13.6 20 679 400	14.1 20 679 400	14.1 20 796 400	18.1 25 1021 400	18.3 25 1021 400	18.3 25 1146 400
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu	$ \frac{1}{P_{ax} \pm \frac{1}{2}} $	F _{q max} a T _{max} Δp perm +F _{ax max} -F _{ax max}	kN mm Nm bar N N	11.1 20 488 380 1000	11.4 20 512 400 1000	11.4 20 573 400 1000	13.6 20 679 400 1250	14.1 20 679 400 1250	14.1 20 796 400 1250	18.1 25 1021 400 1600	18.3 25 1021 400 1600	18.3 25 1146 400 1600
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾	$ \frac{1}{P_{ax} \pm \pm$	F _{q max} a T _{max} Δp perm +F _{ax max} -F _{ax max}	kN mm Nm bar N N	11.1 20 488 380 1000 0	11.4 20 512 400 1000 0	11.4 20 573 400 1000 0	13.6 20 679 400 1250 0	14.1 20 679 400 1250 0	14.1 20 796 400 1250 0	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per	$ \frac{1}{P_{ax} \pm \pm$	Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar	kN mm Nm bar N N	11.1 20 488 380 1000 0 10.6	11.4 20 512 400 1000 0 10.6	11.4 20 573 400 1000 0 10.6	13.6 20 679 400 1250 0 12.9	14.1 20 679 400 1250 0 12.9	14.1 20 796 400 1250 0 12.9	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft Maximum	$ \frac{1}{P_{ax} \pm \pm$	Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar NG	kN mm bar N N N N/bar	11.1 20 488 380 1000 0 10.6 200	11.4 20 512 400 1000 0 10.6 250	11.4 20 573 400 1000 0 10.6 355	13.6 20 679 400 1250 0 12.9 500	14.1 20 679 400 1250 0 12.9 710	14.1 20 796 400 1250 0 12.9 12.9	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft	$ \frac{1}{P_{ax} \pm \pm$	$\begin{array}{c} F_{q \ max} \\ a \\ \hline \\ \Delta p \ perm \\ + F_{ax \ max} \\ - F_{ax \ max} \\ \hline \\ E \\ F_{ax \ perm/bar} \\ \hline \\ NG \\ \hline \\ e \\ F_{q \ max} \\ \hline \\ a \end{array}$	kN mm bar N N N N/bar mm	11.1 20 488 380 1000 0 10.6 200 50	11.4 20 512 400 1000 0 10.6 250 5.0 1.2 ⁶⁾ 41	11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	13.6 20 679 400 1250 0 12.9 70 1.9 ⁶⁾ 52.5	14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶⁾ 67.5	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq	$F_{ax} \pm \pm \pm \bigoplus_{i=1}^{i=1}$ bar operating pressure F_{q} ue	Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar MG Ø Fq max	kN mm bar N N N/bar M/bar kN	11.1 20 488 380 1000 0 10.6 200 50 20.3	11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41	11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	13.6 20 679 400 1250 0 12.9 500 70 1.9 ⁶⁾ 52.5	14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶) 67.5	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar)	$F_{ax} \pm \pm \pm \bigoplus_{i=1}^{i=1}$ bar operating pressure F_{q} ue	$\begin{array}{c} F_{q \ max} \\ a \\ \hline \\ \Delta p \ perm \\ + F_{ax \ max} \\ - F_{ax \ max} \\ \hline \\ E \\ F_{ax \ perm/bar} \\ \hline \\ NG \\ \hline \\ e \\ F_{q \ max} \\ \hline \\ a \end{array}$	kN mm bar N N N/bar M/bar mm kN	11.1 20 488 380 1000 0 10.6 200 50 20.3 25	11.4 20 512 400 1000 0 10.6 250 5.0 1.2 ⁶⁾ 41	11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	13.6 20 679 400 1250 0 12.9 70 1.9 ⁶⁾ 52.5	14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶⁾ 67.5	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq	$F_{ax} \pm \pm \pm \bigoplus_{i=1}^{i=1}$ bar operating pressure F_{q} ue	$\begin{array}{c} F_{q\ max} \\ a \\ \hline T_{max} \\ \Delta p\ perm \\ +F_{ax\ max} \\ -F_{ax\ max} \\ \hline F_{ax\ perm/bar} \\ \textbf{NG} \\ \textbf{0} \\ F_{q\ max} \\ a \\ \hline T_{max} \end{array}$	kN mm bar N N N/bar Mm kN mm	11.1 20 488 380 1000 0 10.6 200 20.3 25 1273	11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41	11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	13.6 20 679 400 1250 0 12.9 500 70 1.9 ⁶⁾ 52.5	14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶) 67.5	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu	$F_{ax} \pm \pm \pm \bigoplus_{i=1}^{i=1}$ bar operating pressure F_{q} ue	$\begin{array}{c} F_{q \ max} \\ a \\ \hline \\ T_{max} \\ \Delta p \ perm \\ +F_{ax \ max} \\ -F_{ax \ max} \\ \hline \\ F_{ax \ perm/bar} \\ \hline \\ \textbf{NG} \\ \textbf{0} \\ F_{q \ max} \\ a \\ \hline \\ T_{max} \\ \Delta p \ perm \end{array}$	kN mm bar N N N/bar Mm kN mm Nm bar	11.1 20 488 380 1000 0 10.6 200 50 20.3 25 1273 400	11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41	11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	13.6 20 679 400 1250 0 12.9 70 1.9 ⁶⁾ 52.5	14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5	14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶⁾ 67.5	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0
Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu Maximum axial force ²⁾ Permissible axial force per Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torq ▲ permissible pressu	$F_{ax} \pm \pm f_{ax} \pm$	$\begin{array}{c} F_{q \ max} \\ a \\ \hline \\ T_{max} \\ \Delta p \ perm \\ + F_{ax \ max} \\ - F_{ax \ max} \\ \hline \\ T_{max} \\ a \\ \hline \\ T_{max} \\ \Delta p \ perm \\ + F_{ax \ max} \\ - F_{ax \ max} \\ \hline \\ - F_{ax \ max} \\ - F_{ax \ max} \\ \hline \end{array}$	kN mm bar N N N/bar Mm kN kN kN kN kN kN kN kN kN kN	11.1 20 488 380 1000 0 10.6 200 20.3 25 1273 400 1600	11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41	11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5 5) 5)	13.6 20 679 400 1250 0 12.9 12.9 5 50 5 5) 3000	14.1 20 679 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5 5) 5)	14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶) 67.5 5) 5)	18.1 25 1021 400 1600 0	18.3 25 1021 400 1600 0	18.3 25 1146 400 1600 0

1) With intermittent operation

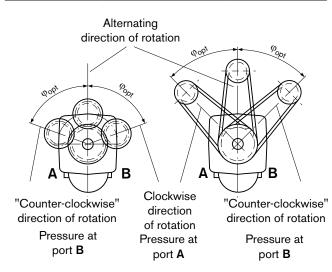
2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

- 3) Conical shaft with threaded pin and woodruff key (DIN 6888)
- 4) Restricted technical data only for splined shaft

5) Please contact us.

6) When at a standstill or when axial piston unit operating in non-pressurized conditions. Higher forces are permissible when under pressure, please contact us.

Note


Influence of the direction of the permissible axial force: $+F_{ax max}$ = Increase in service life of bearings

Effect of radial force F_{q} on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive	V-belt output
NG	φopt	φopt
5 to 180	± 70°	± 45°
200 to 1000	± 45°	± 70°

Determining the operating characteristics

Input flow
$$q_v = \frac{V_g \cdot n}{1000 \cdot \eta_v}$$
 [L/min]

$$n = \frac{q_V \cdot 1000 \cdot \eta_v}{V_a} \qquad [min^{-1}]$$

$$T = \frac{V_{g} \cdot \Delta p \cdot \eta_{mh}}{20 \cdot \pi}$$
 [Nm]

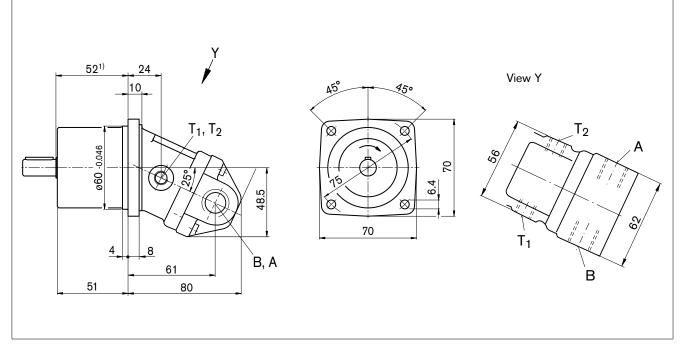
$$\mathsf{P} = \frac{2 \pi \cdot \mathsf{T} \cdot \mathsf{n}}{60000} = \frac{\mathsf{q}_{\mathsf{v}} \cdot \Delta \mathsf{p} \cdot \eta_{\mathsf{t}}}{600} [\mathsf{kW}]$$

 V_g = Displacement per revolution in cm³

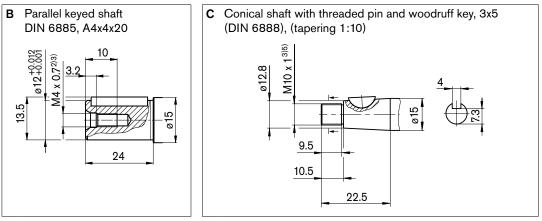
- $\Delta p = Differential pressure in bar$
- n = Speed in rpm

Speed

Torque


Power

- η_v = Volumetric efficiency
- η_{mh} = Mechanical-hydraulic efficiency
- η_t = Total efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)



Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard ⁶⁾	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line	DIN 3852	M18 x 1.5; 12 deep	350	0
T ₁	Drain line	DIN 3852	M10 x 1; 8 deep	3	0
T ₂	Drain line	DIN 3852	M10 x 1; 8 deep	3	0

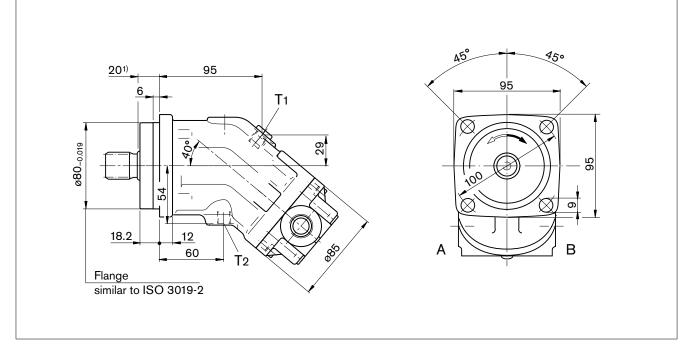
1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

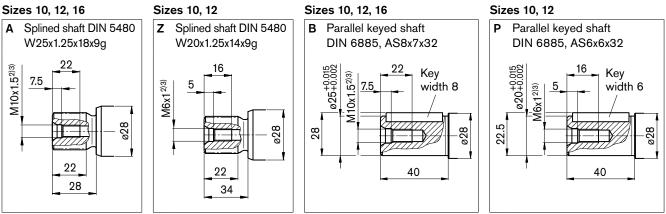
3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Thread according to DIN 3852, maximum tightening torque: 30 Nm


6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)



Dimensions sizes 10, 12, 16

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
А, В	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	O ⁵⁾

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 46 for the maximum tightening torques.

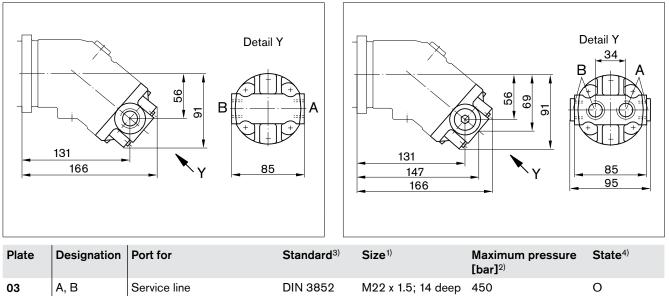
4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

04

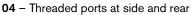

1x O each

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 10, 12, 16

Location of the service line ports on the port plates

1) Observe the general instructions on page 46 for the maximum tightening torques

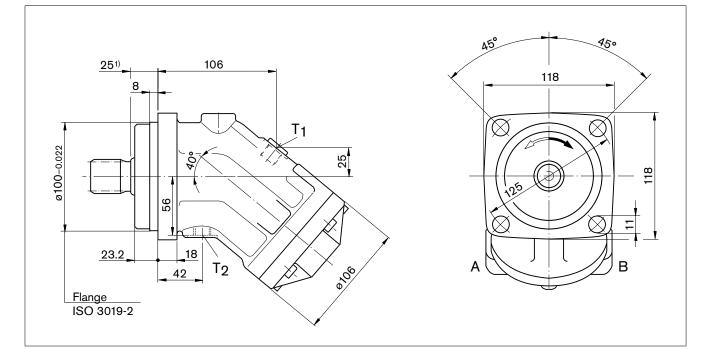

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

DIN 3852

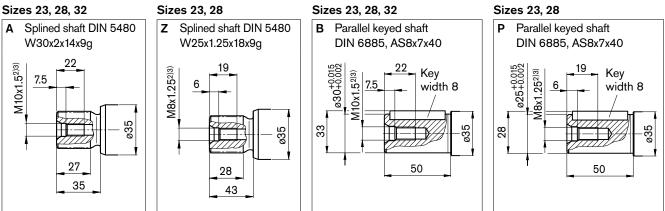
3) The spot face can be deeper than specified in the appropriate standard.

Service line

4) O = Must be connected (plugged on delivery)


M22 x 1.5; 14 deep

450



Dimensions sizes 23, 28, 32

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	O ⁵⁾

1) To shaft collar

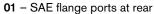
2) Center bore according to DIN 332 (thread according to DIN 13)

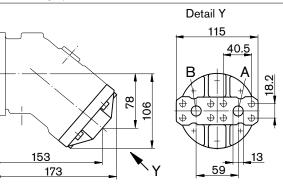
3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

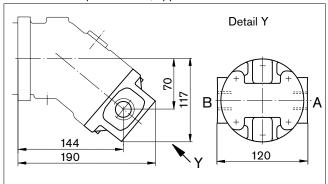
5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

6) The spot face can be deeper than specified in the appropriate standard.

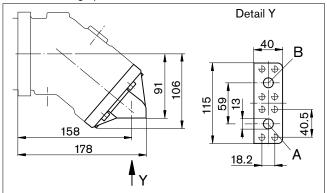

7) O = Must be connected (plugged on delivery)



Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions sizes 23, 28, 32

Location of the service line ports on the port plates



03 - Threaded ports at side, opposite

10 - SAE flange ports at bottom (same side)⁴⁾

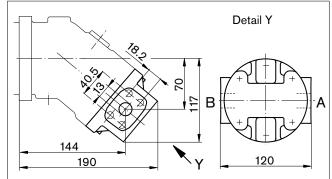
Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁶⁾
01, 02, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1/2 in M8 x 1.25; 15 deep	450	0
03]	Service line	DIN 3852 ⁵⁾	M27 x 2; 16 deep	450	0
04		Service line	DIN 3852 ⁵⁾	M27 x 2; 16 deep	450	1x O each

1) Observe the general instructions on page 46 for the maximum tightening torques

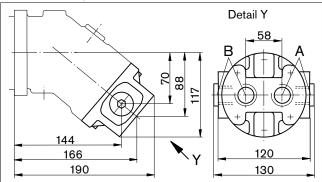
2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard

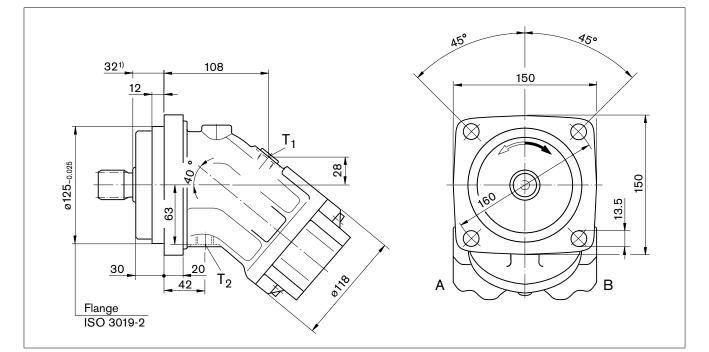
4) Only sizes 28 and 32

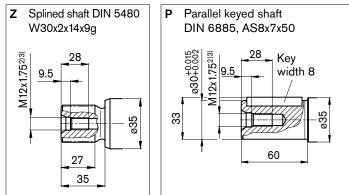

5) The spot face can be deeper than specified in the appropriate standard.

6) O = Must be connected (plugged on delivery)


Note

Port plates 18 and 19: see pages 37 and 40





Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

1) To shaft collar

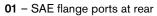
2) Center bore according to DIN 332 (thread according to DIN 13)

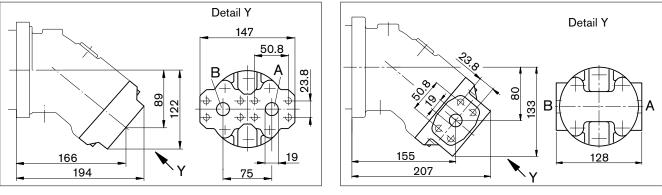
3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

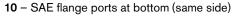
 $_{5}$ Depending on installation position, T_1 or T_2 must be connected (see also installation instructions on page 44).

6) The spot face can be deeper than specified in the appropriate standard.

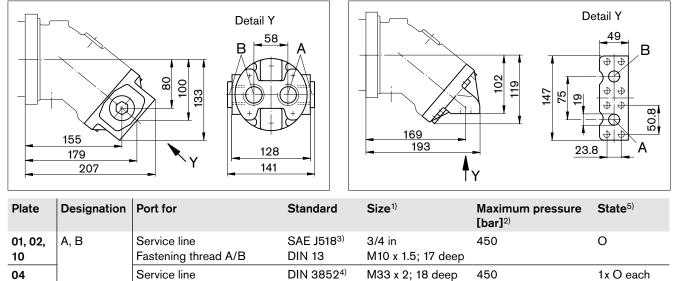

7) O = Must be connected (plugged on delivery)



Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions size 45

Location of the service line ports on the port plates



02 - SAE flange ports at side, opposite

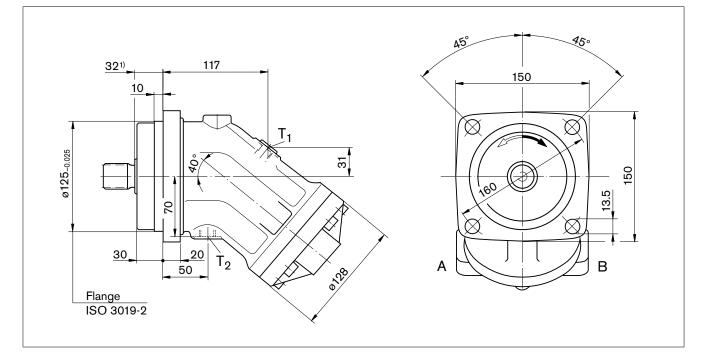
1) Observe the general instructions on page 46 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

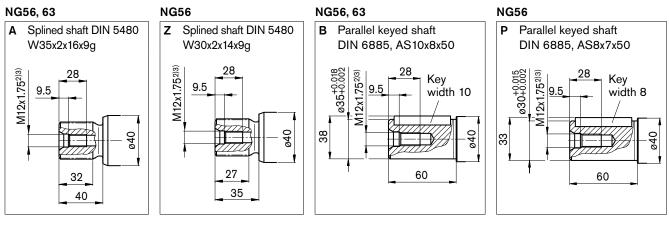
3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

4) The spot face can be deeper than specified in the appropriate standard.

5) O = Must be connected (plugged on delivery)


Note

Port plates 18 and 19: see pages 37 and 40



Dimensions sizes 56, 63

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

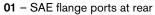
1) To shaft collar

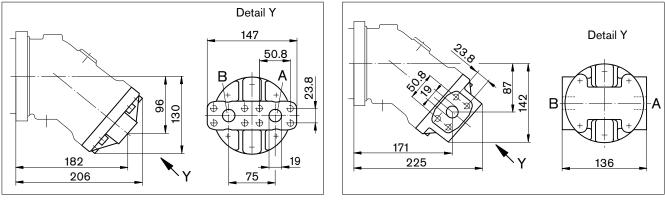
2) Center bore according to DIN 332 (thread according to DIN 13)

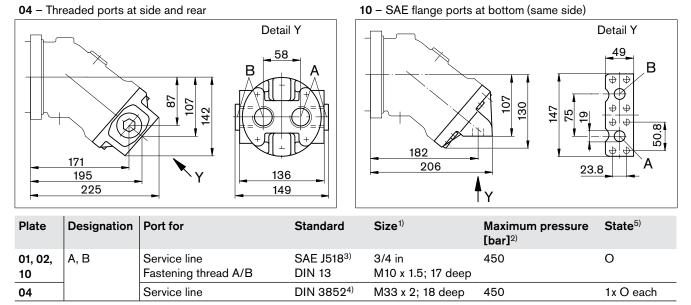
3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).


6) The spot face can be deeper than specified in the appropriate standard.


7) O = Must be connected (plugged on delivery)



Dimensions sizes 56, 63

Location of the service line ports on the port plates

1) Observe the general instructions on page 46 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

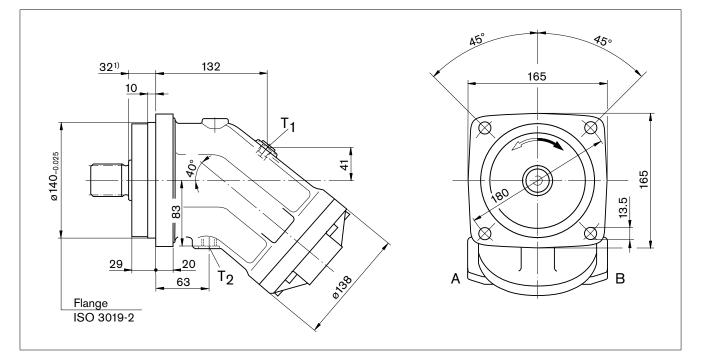
3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

4) The spot face can be deeper than specified in the appropriate standard.

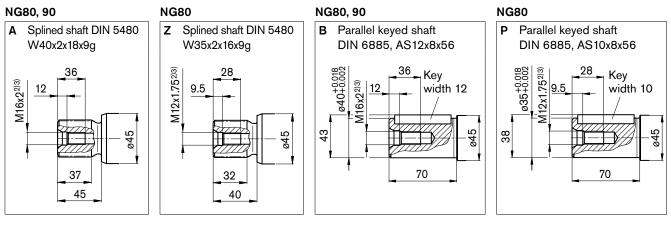
5) O = Must be connected (plugged on delivery)

Note

Port plates 18 and 19: see pages 37 and 40



Before finalizing your design, request a binding installation drawing. Dimensions in mm.


02 - SAE flange ports at side, opposite

Dimensions sizes 80, 90

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

1) To shaft collar

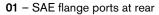
2) Center bore according to DIN 332 (thread according to DIN 13)

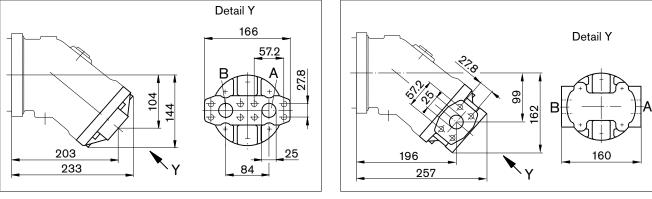
3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

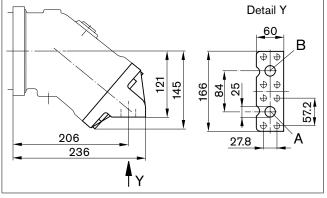
5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

6) The spot face can be deeper than specified in the appropriate standard.


7) O = Must be connected (plugged on delivery)



Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions sizes 80, 90

Location of the service line ports on the port plates

10 - SAE flange ports at bottom (same side)

02 - SAE flange ports at side, opposite

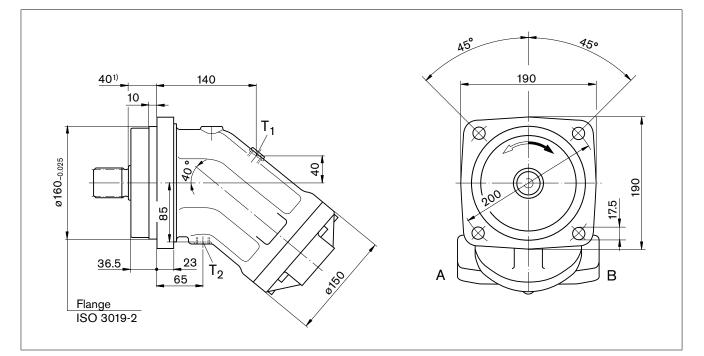
Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02, 10	, ,	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 in M12 x 1.75; 17 deep	450	0

1) Observe the general instructions on page 46 for the maximum tightening torques

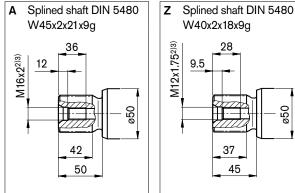
2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

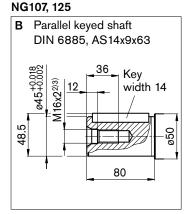
4) O = Must be connected (plugged on delivery)


Note

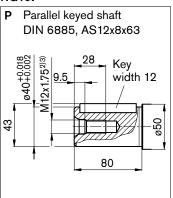
Port plates 18 and 19: see pages 37 and 40


Dimensions sizes 107, 125

Before finalizing your design, request a binding installation drawing. Dimensions in mm.



Drive shafts



NG107

NG107

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁵⁾

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

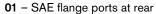
3) Observe the general instructions on page 46 for the maximum tightening torques.

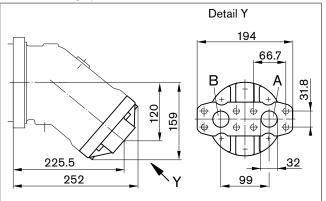
4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

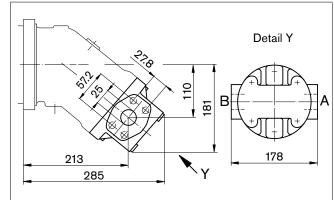
ø50

6) The spot face can be deeper than specified in the appropriate standard.

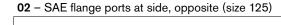

7) O = Must be connected (plugged on delivery)

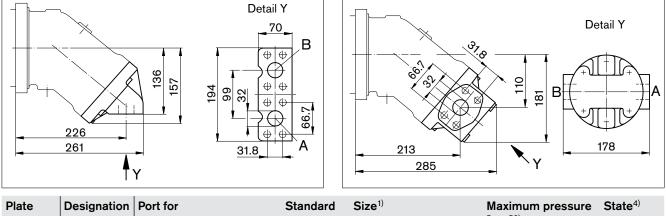


Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions sizes 107, 125

Location of the service line ports on the port plates





02 - SAE flange ports at side, opposite (size 107)

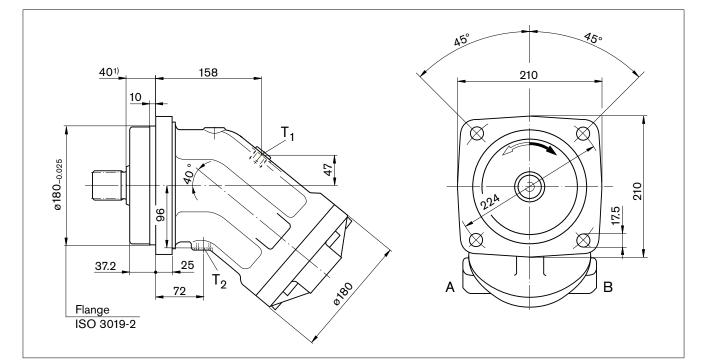
Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 10	A, B	Service line	SAE J518 ³⁾	1 1/4 in	450	0
		Fastening thread A/B	DIN 13	M14 x 2; 19 deep		
02		Service line	SAE J518 ³⁾	1 in	450	0
(size 107)		Fastening thread A/B	DIN 13	M12 x 1.75; 17 deep		
02		Service line	SAE J518 ³⁾	1 1/4 in	450	0
(size 125)		Fastening thread A/B	DIN 13	M14 x 2; 19 deep		

1) Observe the general instructions on page 46 for the maximum tightening torques

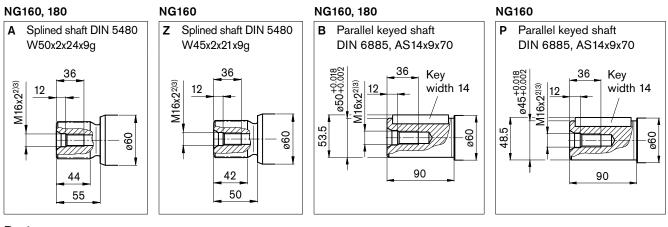
2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

4) O = Must be connected (plugged on delivery)


Note

Port plates 17, 18 and 19: see pages 37 and 40



Dimensions sizes 160, 180

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
A, B	Service line (see port plates)			450	
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁵⁾

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

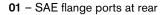
3) Observe the general instructions on page 46 for the maximum tightening torques.

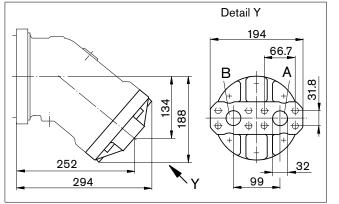
4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

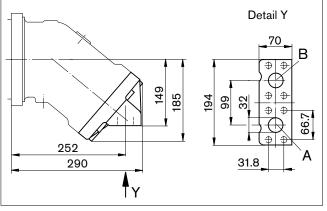
6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)




202

Before finalizing your design, request a binding installation drawing. Dimensions in mm.


Dimensions sizes 160, 180

Location of the service line ports on the port plates

10 - SAE flange ports at bottom (same side)

Y

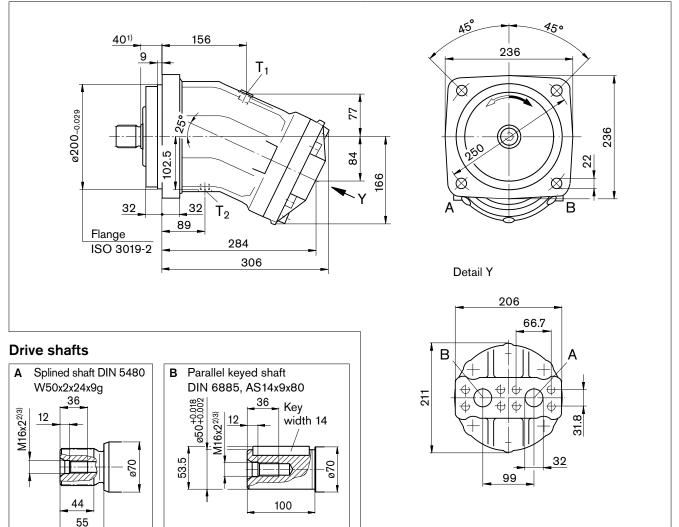
237

294

Plate	Designation	Port for	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
01, 02, 10	А, В	Service line Fastening thread A/B	SAE J518 ³⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0

1) Observe the general instructions on page 46 for the maximum tightening torques

- 2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 4) O = Must be connected (plugged on delivery)


Note

Port plates 18 and 19: see pages 37 and 40

Port plate 01 - SAE flange ports at rear

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
T ₁	Drain line	DIN 38527)	M22 x 1.5; 14 deep	3	X ⁶⁾
T ₂	Drain line	DIN 38527)	M22 x 1.5; 14 deep	3	O ⁶⁾

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

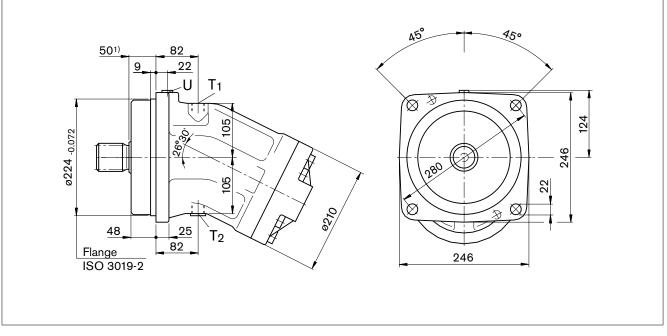
3) Observe the general instructions on page 46 for the maximum tightening torques.

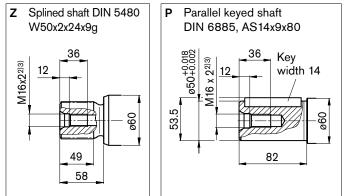
4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

7) The spot face can be deeper than specified in the appropriate standard.


O = Must be connected (plugged on delivery)


Notes

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁷⁾
А, В	Service line (see port plates)			400	
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
U	Bearing flushing	DIN 3852 ⁶⁾	M14 x 1.5; 12 deep	3	Х

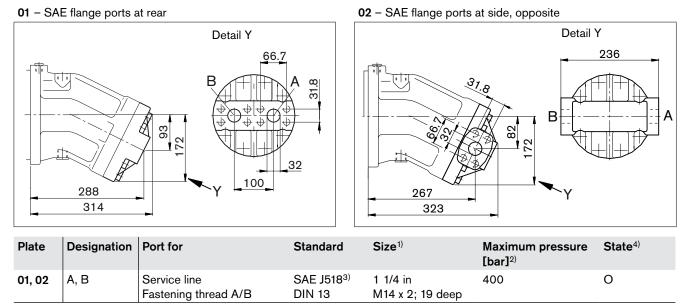
1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T1 or T2 must be connected (see also installation instructions on page 44).


6) The spot face can be deeper than specified in the appropriate standard.

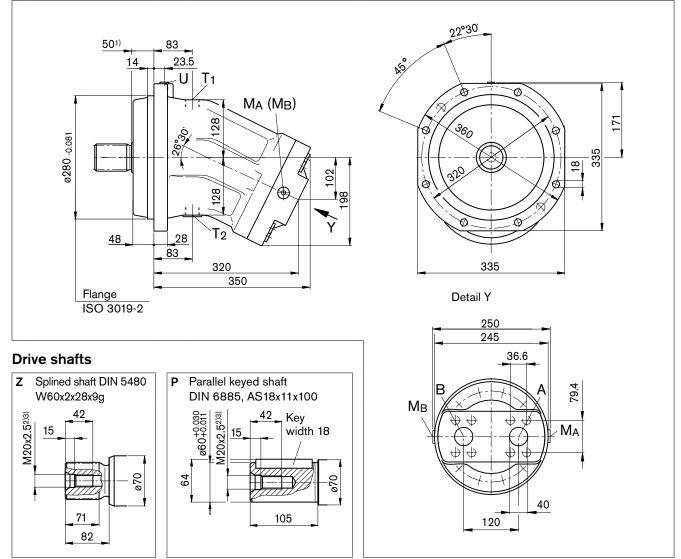
7) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Location of the service line ports on the port plates

1) Observe the general instructions on page 46 for the maximum tightening torques

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.


3) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

4) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ^{4)}	State ⁸⁾
A, B	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁶⁾
T ₂	Drain line	DIN 38527)	M33 x 2; 18 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M14 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Х

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 46 for the maximum tightening torques.

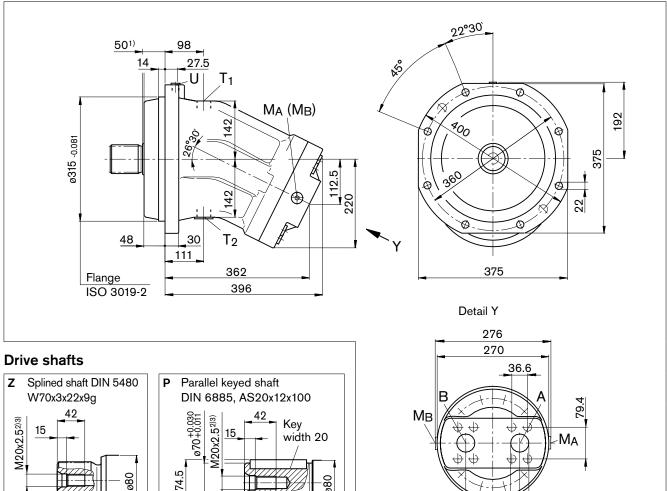
4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

7) The spot face can be deeper than specified in the appropriate standard.

O = Must be connected (plugged on delivery)



Port plate 01 - SAE flange ports at rear

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

40

130

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
Α, Β	Service line Fastening thread A/B	SAE J5185 ⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁶⁾
T ₂	Drain line	DIN 38527)	M33 x 2; 18 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Х

ğ

105

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

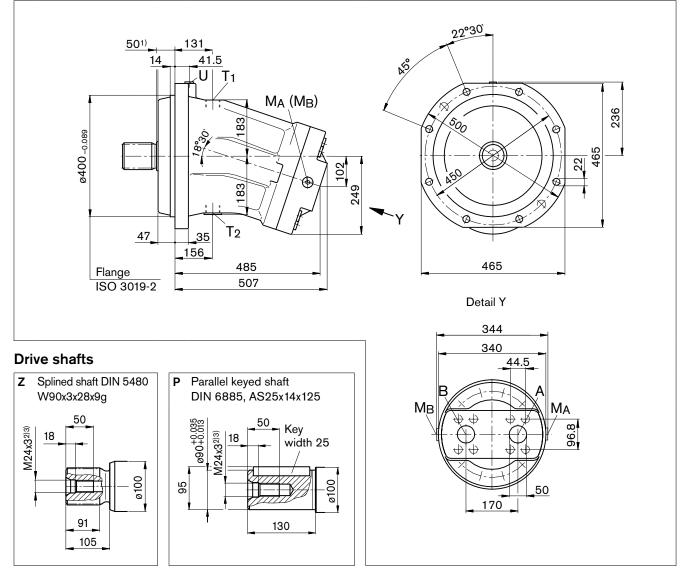
5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

7) The spot face can be deeper than specified in the appropriate standard.

8) O = Must be connected (plugged on delivery)

⁸⁰


67

80

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 01 - SAE flange ports at rear

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
А, В	Service line Fastening thread A/B	SAE J518 ⁵⁾ DIN 13	2 in M20 x 2.5; 30 deep	400	0
T ₁	Drain line	DIN 38527)	M42 x 2; 20 deep	3	O ⁶⁾
T ₂	Drain line	DIN 38527)	M42 x 2; 20 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Х

1) To shaft collar

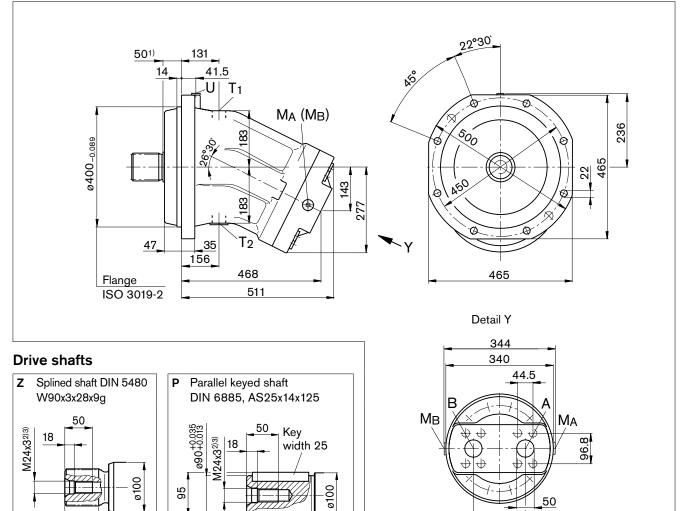
2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).


7) The spot face can be deeper than specified in the appropriate standard.

8) O = Must be connected (plugged on delivery)

Port plate 01 - SAE flange ports at rear

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

91

105

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
Α, Β	Service line Fastening thread A/B	SAE J518 ⁵⁾ DIN 13	2 in M20 x 2.5; 30 deep	400	0
T ₁	Drain line	DIN 38527)	M42 x 2; 20 deep	3	O ⁶⁾
T ₂	Drain line	DIN 38527)	M42 x 2; 20 deep	3	X ⁶⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Х

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 46 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on page 44).

130

7) The spot face can be deeper than specified in the appropriate standard.

- 8) O = Must be connected (plugged on delivery)
- X = Plugged (in normal operation)

50

170

Flushing and boost pressure valve

The flushing and boost pressure valve is used to remove heat from the hydraulic circuit.

In an open circuit, it is used only for flushing the housing.

In a closed circuit, it ensures a minimum boost pressure level in addition to the case flushing.

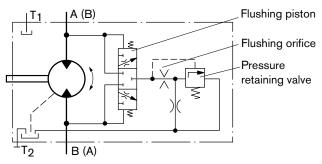
Hydraulic fluid is directed from the respective low pressure side into the motor housing. This is then fed into the reservoir, together with the case drain fluid. The hydraulic fluid, removed out of the closed circuit must be replaced by cooled hydraulic fluid from the boost pump.

With port plate 027, the valve is mounted directly on the fixed motor (sizes 45 to 180, 250); with port plate 017 (sizes 355 and 500) on a plate.

Cracking pressure of pressure retaining valve

(observe when setting the primary valve) Sizes 45 to 500, fixed setting

Sizes 45 to 500, fixed setting	16 bar
Switching pressure of flushing piston Δp	
Sizes 45 to 500	8±1 bar


Flushing flow q_v

Orifice (throttles with integrated valve) can be used to set the flushing flows as required.

Following parameters are based on:

 $\Delta p_{ND} = p_{ND} - p_G = 25$ bar and v = 10 mm²/s ($p_{ND} = low$ pressure, $p_G = case$ pressure)

Schematic

Standard flushing flows

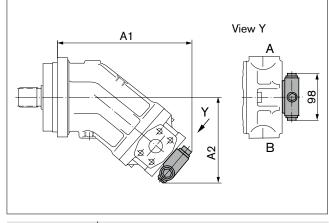
Flushing and boost pressure valve, mounted (code 7)

Size	Flushing flow q _v [L/min]	ø [mm]	Mat. No. of orifice
45	3.5	1.2	R909651766
107, 125	8	1.8	R909419696
160, 180	10	2.0	R909419697
250	10	2.0	R909419697
355, 500	16	2.5	R910803019

With sizes 45 to 180, orifices can be supplied for flushing flows from 3.5 to 10 L/min. For other flushing flows, please state the required flushing flow when ordering. The flushing flow without orifice is approx. 12 to 14 L at low pressure $\Delta p_{ND} = 25$ bar.

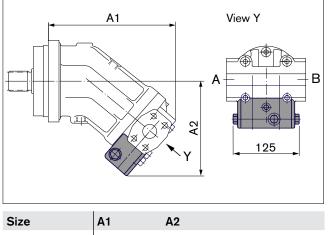
Flushing and boost pressure valve, integrated (code 9)

Size	Throttle ø [mm]	q _v [L/min]
56, 63,	1.5	6
80, 90	1.8	7.3

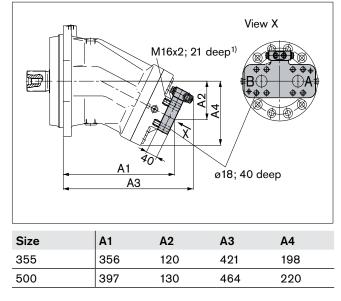


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Flushing and boost pressure valve


Dimensions

Port plate 027 - SAE flange ports at side


Size	A1	A2
45	223	151
107, 125	294	192
160, 180	315	201
250	344	172

Port plate 029	- SAE flange	ports at side
----------------	--------------	---------------

Size A1		
56, 63 22	5 176	
80, 90 25	7 186	5.7

Port plate 017 - SAE flange ports at rear

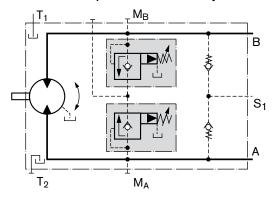
1) DIN 13, observe the general instructions on page 46 for the maximum tightening torques

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

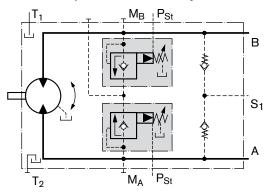
Pressure-relief valve

The MHDB pressure-relief valves (see RE 64642) protect the hydraulic motor from overload. As soon as the set cracking pressure is reached, the hydraulic fluid flows from the high-pressure side to the low-pressure side.

The pressure-relief valves are only available in combination with port plates 181, 191 or 192 (counterbalance valve for mounting to port plate 181: see next page).


Cracking pressure setting range _____ 50 to 420 bar

With the version "with pressure boost facility" (192), a higher pressure setting can be realized by applying an external pilot pressure of 25 to 30 bar to port P_{St} .


When ordering, please state in plain text:

- Cracking pressure of pressure-relief valve
- Cracking pressure with pilot pressure applied to P_{St} (only with version 192)

Version without pressure boost facility "191"

Version with pressure boost facility "192"

Pressure-relief valve

Dimensions

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

	View Y	$ \begin{array}{c} $		Only with port plat	S ₁		Viev	v Z: sion wit	B	S ₁ sure boos	st facility	A	1" or "1	81"
Size		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13 ²⁾
28, 32	MHDB.16	209	186	25	68	174	102	87	36	66	50.8	23.8	ø19	M10; 17 deep
45	MHDB.16	222	198	22	65	187	113	98	36	66	50.8	23.8	ø19	M10; 17 deep
56, 63	MHDB. 22	250	222	19	61	208	124	105	42	75	50.8	23.8	ø19	M10; 13 deep
80, 90	MHDB. 22	271	243	17.5	59	229	134	114	42	75	57.2	27.8	ø25	M12; 18 deep
107, 125	MHDB. 32	298	266	10	52	250	149.5	130	53	84	66.7	31.8	ø32	M14; 19 deep
160, 180	MHDB.32	332	301	5	47	285	170	149	53	84	66.7	31.8	ø32	M14; 19 deep
Size														

Assembly instructions for port plate with pressure boost facility "192":

The lock nut must be counterheld when installing the hydraulic line at the pst port!

M22 x 1.5; 14 deep

M26 x 1.5; 16 deep

Ports

45

56, 63

80, 90

107, 125

160, 180

Designation	Port for	Standard	Size	Maximum pressure [bar] ²⁾	State ³⁾
A, B	Service line	SAE J518	See above	450	0
S ₁	Supply (only with port plate 191/192)	DIN 3852	See above	5	0
M _A , M _B	Measuring operating pressure	DIN 3852	See above	450	Х
P _{St}	Pilot pressure (only with port plate 192)	DIN ISO 228	See above	30	0

M20 x 1.5; 14 deep

M26 x 1.5; 16 deep

M26 x 1.5; 16 deep

M26 x 1.5; 16 deep

M30 x 1.5; 16 deep

G 1/4

G 1/4

G 1/4

G 1/4

G 1/4

1) Observe the general instructions on page 46 for the maximum tightening torques.

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

3) O = Must be connected (plugged on delivery)

3/4 in

3/4 in

1 1/4 in

1 1/4 in

1 in

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

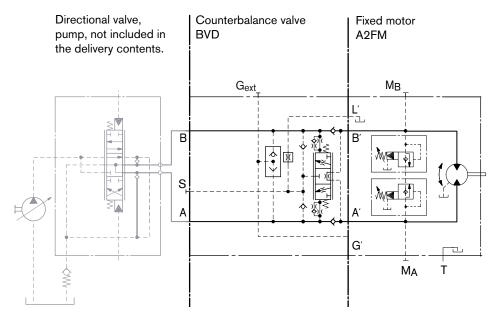
Counterbalance valve BVD and BVE

Function

Travel drive/winch counterbalance valves are designed to reduce the danger of overspeeding and cavitation of axial piston motors in open circuits. Cavitation occurs if the motor speed is greater than it should be for the given input flow while braking, travelling downhill, or lowering a load.

If the inlet pressure drops, the counterbalance spool throttles the return flow and brakes the motor until the inlet pressure returns to approx. 20 bar.

Note


- BVD available for sizes 28 to 180 and BVE available for sizes 107 to 180.
- The counterbalance valve must be ordered additionally. We recommend ordering the counterbalance valve and the motor as a set. Ordering example: A2FM90/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12
- The counterbalance valve does not replace the mechanical service brake and park brake.
- Observe the detailed notes on the BVD counterbalance valve in RE 95522 and BVE counterbalance valve in RE 95525!
- For the design of the brake release valve, we must know for the mechanical park brake:
 - the pressure at the start of opening
 - the volume of the counterbalance spool between minimum stroke (brake closed) and maximum stroke (brake released with 21 bar)
 - the required closing time for a warm device (oil viscosity approx. 15 mm²/s)

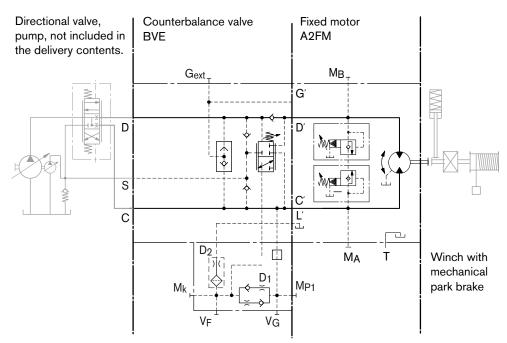
Travel drive counterbalance valve BVD...F

Application option

- Travel drive on wheeled excavators

Example schematic for travel drive on wheeled excavators A2FM090/61W-VAB188 + BVD20F27S/41B-V03K16D0400S12

Counterbalance valve BVD and BVE


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Winch counterbalance valve BVD...W and BVE

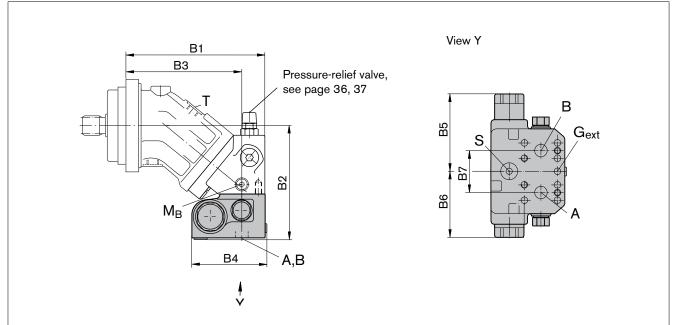
Application options

- Winch drive in cranes (BVD and BVE)
- Track drive in excavator crawlers (BVD)

Example schematic for winch drive in cranes A2FM090/61W-VAB188 + BVE25W385/51ND-V100K00D4599T30S00-0

Permissible input flow or pressure in operation with DBV and BVD/BVE

	Without value	/e	Restricted w	Restricted values in operation with DBV and BVD/BVE						
Motor			DBV				BVD/BVE			
NG	p _{nom} /p _{max} [bar]	q _{V max} [L/min]	NG	p _{nom} /p _{max} [bar]	q _v [L/min]	Code	NG	p _{nom} /p _{max} [bar]	q _v [L/min]	Code
28	400/450	176	16	350/420	100	181	20	350/420	100	188
32		201				191, 192	(BVD)			
45		255								
56		280	22		240				220	
63		315								
80		360								
90		405								
107		427				171				178
125		500				191, 192	192	-		
107		427	32		400	400 181	25		320	188
125		500				191, 192	(BVD/BVE)			
160		577								
180		648								
DBV			press	sure-relief val	/e					
BVD	BVDcounterbalance valve, double-acting									


BVE ______counterbalance valve, one-sided

Counterbalance valve BVD and BVE

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions

A2FM	Counterbalance valve									
Size	Туре	Ports	Dimen	Dimensions						
		А, В	B1	B2	B3	B4 (S)	B4 (L)	B5	B6	B7
28, 32	BVD 20 16	3/4 in	209	175	174	142	147	139	98	66
45	BVD 20 16	3/4 in	222	196	187	142	147	139	98	66
56, 63	BVD 20 17	3/4 in	250	197	208	142	147	139	98	75
80, 90	BVD 20 27	1 in	271	207	229	142	147	139	98	75
107, 125	BVD 20 28	1 in	298	238	251	142	147	139	98	84
107, 125	BVD 25 38	1 ¹ / ₄ in	298	239	251	158	163	175	120.5	84
160, 180	BVD 25 38	1 ¹ / ₄ in	332	260	285	158	163	175	120.5	84
107, 125	BVE 25 38	1 ¹ / ₄ in	298	240	251	167	172	214	137	84
160, 180	BVE 25 38	1 ¹ / ₄ in	332	260	285	167	172	214	137	84
250	On request									

Ports

Designation	Port for	Version	Standard	Size ¹⁾	Maximum pressure [bar] ²⁾	State ⁴⁾
А, В	Service line		SAE J518	see table above	420	0
S	Infeed	BVD20	DIN 3852 ³⁾	M22 x 1.5; 14 deep	30	Х
		BVD25, BVE25	DIN 3852 ³⁾	M27 x 2; 16 deep	30	Х
Br	Brake release, reduced high pressure	L	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	30	0
G _{ext}	Brake release, high pressure	S	DIN 3852 ³⁾	M12 x 1.5; 12.5 deep	420	x
M _{A,} M _B	Measuring pressure A and B		ISO 6149 ³⁾	M12 x 1.5; 12 deep	420	Х

1) Observe the general instructions on page 46 for the maximum tightening torques.

2) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

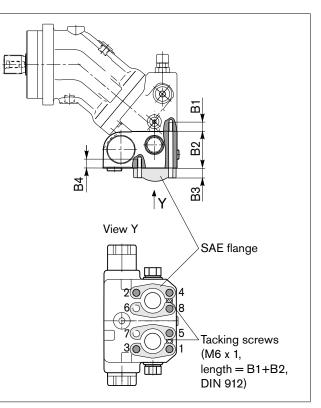
3) The spot face can be deeper than specified in the appropriate standard.

4) O = Must be connected (plugged on delivery)

Counterbalance valve BVD and BVE

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Mounting the counterbalance valve


When delivered, the counterbalance valve is mounted to the motor with two tacking screws (transport protection). The tacking screws may not be removed while mounting the service lines. If the counterbalance valve and motor are delivered separately, the counterbalance valve must first be mounted to the motor port plate using the provided tacking screws. The counterbalance valve is finally mounted to the motor by screwing on the SAE flange with the following screws:

6 screws (1, 2, 3, 4, 5, 8)	length B1+B2+B3
2 screws (6, 7)	length B3+B4

Tighten the screws in two steps in the specified sequence from 1 to 8 (see following scheme).

In the first step, the screws must be tightened with half the tightening torque, and in the second step with the maximum tightening torque (see following table).

Thread	Strength class	Tightening torque [Nm]
M6 x 1 (tacking screw)	10.9	15.5
M10	10.9	75
M12	10.9	130
M14	10.9	205

Size	28, 32, 45	56, 63	80, 90	107, 125, 160, 180	107, 125
Port plate	18				17
B1 ¹⁾	M10 x 1.5; 17 deep	M10 x 1.5; 17 deep	M12 x 1.75; 18 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep
B2	78 ²⁾	68	68	85	68
B3	customer-specific				
B4	M10 x 1.5; 15 deep	M10 x 1.5; 15 deep	M12 x 1.75; 16 deep	M14 x 2; 19 deep	M12 x 1.75; 17 deep

1) Minimum required thread reach 1 x ø-thread

2) Including sandwich plate

Speed sensors

The versions A2FM...U and A2FM...F ("prepared for speed sensor", i.e. without sensor) is equipped with a toothed ring on the rotary group.

On deliveries "prepared for speed sensor", the port is plugged with a pressure-resistant cover.

With the DSA or HDD speed sensor mounted a signal proportional to motor speed can be generated.

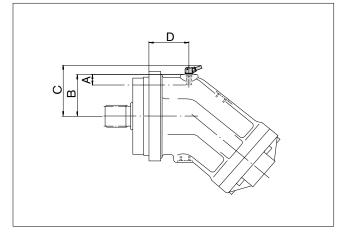
The sensors measures the speed and direction of rotation.

Ordering code, technical data, dimensions and details on the connector, plus safety information about the sensor can be found in the relevant data sheet.

DSA	RE 95133

HDD	RE 35135

The sensor is mounted at the specially provided port D as follows:

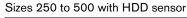

DSA ______with one mounting bolt

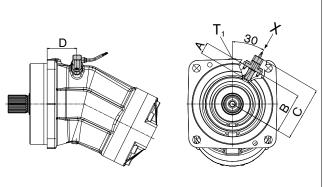
HDD ______ with two mounting bolts

We recommend ordering the A2FM fixed motor complete with sensor mounted.

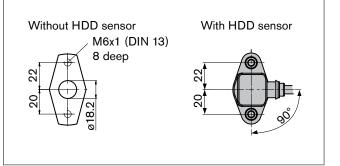
Version "V"

Sizes 23 to 200 with DSA sensor


Version "V"


Sizes 250 to 500 with DSA sensor

On request


Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Version "H" Sizes 250 to 500 with HDD s

View X

Speed sensors

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Size			23, 28, 32	45	56, 63	80, 90	107, 125
Number of teeth			38	45	47	53	59
DSA	А	Insertion depth (tolerance \pm 0.1)	18.4	18.4	18.4	18.4	18.4
	В	Contact surface	57.9	64.9	69.9	74.9	79.9
	С		74.5	81.5	86.5	91.5	96.5
	D		54.7	54.3	61.5	72.5	76.8
Size			160, 180	200	250	355	500
Number of teeth		67	80	78	90	99	
HDD	А	Insertion depth (tolerance \pm 0.1)	-	-	32	32	32
	В	Contact surface	-	-	110.5	122.5	132.5
	С		-	-	149	161	171
	D		-	-	82	93	113
DSA	А	Insertion depth (tolerance \pm 0.1)	18.4	18.4	32	32	32
	В	Contact surface	87.4	100.9	_	-	-
	С		104	117.5	_	-	_
	D		86.8	97.5			

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the drain line must flow into the reservoir below the minimum fluid level.

Installation position

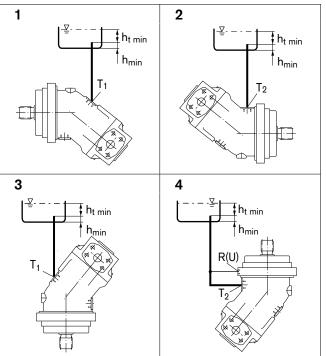
See the following examples 1 to 8.

Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Note

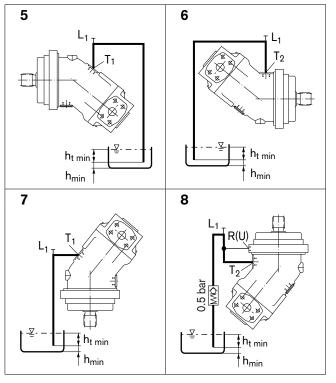
With sizes 10 to 200 with installation position "shaft upward", an air-bleed port R is required (state in plain text when ordering - special version). With sizes 250 to 1000, port U is provided as standard in the area near the bearings for air bleeding.


Installation position	Air bleed	Filling
1	-	T ₁
2	-	T ₂
3	-	T ₁
4	R (U)	T ₂
5	L ₁	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	R (U)	T ₂ (L ₁)

L1 Filling / air bleed

- R Air bleed port (special version)
- U Bearing flushing / air bleed port
- T₁, T₂ Drain port
- h_{t min} Minimum required immersion depth (200 mm)
- h_{min} Minimum required spacing to reservoir bottom (100 mm)

Below-reservoir installation (standard)


Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the motor housing.

General instructions

- The motor A2FM is designed to be used in open and closed circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from POOCCA HYDRAULIC.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports		Maximum permissible tight-	•	WAF	
Standard	Size of thread	ening torque of the female threads M _{G max}	tightening torque of the threaded plugs M _V ¹⁾	hexagon socket of the threaded plugs	
DIN 38521)	M10 x 1	30 Nm	15 Nm ²⁾	5 mm	
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm	
	M14 x 1.5	80 Nm	35 Nm	6 mm	
	M16 x 1.5	100 Nm	50 Nm	8 mm	
	M18 x 1.5	140 Nm	60 Nm	8 mm	
	M20 x 1.5	170 Nm	80 Nm	10 mm	
	M22 x 1.5	210 Nm	80 Nm	10 mm	
	M26 x 1.5	230 Nm	120 Nm	12 mm	
	M27 x 2	330 Nm	135 Nm	12 mm	
	M30 x 2	420 Nm	215 Nm	17 mm	
	M33 x 2	540 Nm	225 Nm	17 mm	
	M42 x 2	720 Nm	360 Nm	22 mm	
DIN ISO 228	G 1/4	40 Nm	-	-	

POOCCA HYDRAULIC

ADD:(518106),XitianCommunity,GongmingStreet,GuangmingDistrict, Shenzhen,Guangdong,China © poocca AG 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

